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Abstract: Pharmacophores are widely used for rational drug design and include those based on receptor
binding sites or on known ligands. To date, ligand-based pharmacophores have typically used one or a
small number of conformers of known receptor ligands. However, this method does not take into account
the inherent dynamic nature of molecules, which sample a wide range of conformations, any of which
could be the bound form. In the present study, molecular dynamics (MD) simulations were used as a means
to sample the conformational space of ligands to include all accessible conformers at room temperature in
the development of a pharmacophore. On the basis of these conformers, probability distributions of selected
distances and angles in a series of δ specific opioid ligands were obtained and correlated with agonist
versus antagonist activities. Individually, the distributions did not allow for unique agonist and antagonist
pharmacophores to be identified. However, by extending the conformational analysis to two dimensions,
a 2D conformationally sampled pharmacophore (CSP) for distinguishing δ receptor agonists and antagonists
was developed. Application of this model to the compound DPI2505 suggests that it may have agonist
activity. It is anticipated that the CSP method, which does not require alignment of compounds during
pharmacophore development, will be a useful tool for obtaining structure-function relationships of ligands
particularly in systems where the receptor 3D structure is not known.

Introduction

The drugs of choice for the treatment of severe pain are the
opioids,1 the activities of which are mediated by their interaction
with specific membrane bound G-protein coupled receptors
(GPCR).2,3 The existence of at least three major classes of opioid
receptors, viz.µ, κ, andδ, has been well established.4 These
receptors have also been cloned and functionally characterized.5-8

While agonists represent the majority of drugs for the treatment
of chronic pain, the undesirable effects associated with them,
such as respiratory depression,9 development of tolerance and
dependence,10 nausea,11 and constipation,12 have directed con-
siderable efforts toward the discovery of novel agents with fewer
or no adverse side effects.

The development of selective peptide and non-peptideδ
ligands over the past decade revealed some of the interesting
physiological roles of theδ receptor including its modulatory
effect on theµ opioid system.13 Studies have shown that co-
administration of aδ antagonist with aµ agonist reduces the
development of tolerance and dependence to theµ agonist.14-17

Slower development of tolerance has also been shown with the
administration of a peptide with the dual profile ofµ agonism
and δ antagonism.18 It has also been reported thatδ receptor
knockout mice develop no tolerance to morphine.19 Thus, an
agent with a dual profile ofδ antagonism andµ agonism would
be an excellent probe for the development of a potent medication
for use in the treatment of chronic pain that would not require
increasing doses, thereby limiting the undesired effects.

Our approach toward meeting this goal is the development
of a pharmacophore forδ antagonism and using the model for
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rational drug design. Such a pharmacophore in combination with
the extensive knowledge of the SAR ofµ ligands can be used
to predictδ antagonists with the desired dual profile. It will
also provide a means for the de novo design of new ligands.

A pharmacophore is a simple model describing the spatial
relationship between atoms or functional groups in a ligand that
are important for its interaction with a receptor. Many phar-
macophores forδ receptor ligands have been developed;
examples include Loew’s pharmacophore20 and the LMC
pharmacophore,21 which are primarily recognition pharmacoph-
ores. In addition, a qualitative pharmacophore based on energy
minimized structures differentiating the pharmacological activity
of δ opioid ligands has been presented.22 The methodology used
for pharmacophore identification typically involves the selection
of low energy conformers of different molecules in a data set
(sample set), followed by the determination of geometric
commonalities among them with respect to the atoms or groups
thought to be essential for the interaction of the molecules with
the receptor. These approaches are, however, limited in a number
of ways by the inherent dynamic nature of molecules and the
nature of their interaction with biomolecules. Molecules at room
temperature exhibit dynamic behavior due to kinetic energy,23

thereby sampling a variety of conformations other than the
lowest energy conformation(s). Importantly, the particular
software and force field used in a given study can influence
the calculated lowest energy conformation.24 Finally, the bound
conformation of a molecule need not be the lowest energy
conformer of the unbound molecule, because the favorable
interaction with the receptor or enzyme would enable it to
overcome the conformational strain associated with assuming
a higher energy conformation.

To overcome these limitations, we propose an approach based
on the use of MD simulations of molecules for obtaining
distributions of geometric information to be used in pharma-
cophore development. Probability distributions of selected
geometric terms, rather than individual structures, are the basis
of the pharmacophore. This approach is referred to as confor-
mationally sampled pharmacophore or CSP, and it was applied
in the present study to a series of knownδ-opioid nonpeptidic
agonists and antagonists. The distributions of geometric infor-
mation were analyzed in both one- and two-dimensions (2D),
and from these efforts a 2D CSP allowing the prediction ofδ
agonists versus antagonists was developed. 2D CSP analysis
was then applied to the compound DPI2505, indicating that the
compound may have agonist activity.

Computational Methods

A set ofδ ligands, Figure 1, was model built using Sybyl 6.2 (Tripos,
Inc.). All molecules were protonated at the basic nitrogen. In compounds
3,4 and 6-10, the H atom was oriented over the plane of the
hydrophobic group (B), shown in red in Figure 1, based on the known
X-ray structure of naltrexone,25,26from which the antagonist naltrindole27

and its analogues were derived. For2, two hydrogen configurations
were modeled at the nitrogen bearing the allyl substituent, while for1,
5, and11, four hydrogen configurations were obtained by the attachment

of hydrogen in both configurations to the two basic nitrogens in these
compounds. The structures were then energy minimized in Sybyl using
the conjugate gradient method with Gasteiger-Hückel charges to a
final gradient of 0.05 kcal/mol Å.

The molecules were ported into CHARMM28,29 for treatment using
the Merck-molecular force field (MMFF).30,31 This treatment initially
involved a 200-step adopted-basis Newton Raphson (ABNR) minimiza-
tion followed by MD simulations. MD simulations were performed
for 10 ns using Langevin dynamics32 with a friction coefficient of 50
ps-1 at a temperature of 300 K. SHAKE of all covalent bonds involving
hydrogens33 was performed allowing for an integration time step of
0.002 ps. Nonbond interactions were calculated using a constant
dielectric with an infinite cutoff. A scaling factor of 0.75 was used to
treat 1-4 interactions. Aqueous solvation, for energy minimization and
dynamics, was treated via the generalized Born (GB) continuum solvent
model34 as implemented in CHARMM and specially optimized for
MMFF.35 GB models have been successfully used in a number of
pharmacophore-based studies.36-39 Coordinate sets were saved every
2 ps, from which the probability distributions were calculated. Prob-
ability distributions were determined on the basis of the number of
conformations in a given bin divided by the total number of conformers
in the entire sample (e.g., 5000 for each MD simulation of 10 ns). Bin
widths were 0.1 Å for distances and 1° for angles. For compounds
with multiple protonation states, data from the MD simulations on each
of the protonation states were combined, from which a single probability
distribution for those compounds was determined. MD simulations for
all compounds were also performed at 600 K, and probability
distributions were determined (see Supporting Information). In addition,
gas-phase simulations were carried out for one protonation state of
compound2 and for compounds6 and9 using MMFF in a vacuum,
and with CFF9540,41 implemented in CHARMM, and results were
compared with the results from the MMFF GB simulations (see
Supporting Information).

The lowest energy conformer for each molecule was obtained from
the MD trajectories by selecting structures from the trajectory every
50 ps and subjecting each structure to 200 ABNR minimization steps
followed by 50 steps of Newton-Raphson minimization. The resulting
energy for each successive conformation was then compared, and the
conformer with the lowest energy from the entire trajectory was
selected. The conformation thus obtained was then minimized by the
ABNR method separately in a vacuum and with the GB solvation
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model, to a gradient less than 10-5 kcal/mol Å, yielding a set of
minimum energy conformers obtained in vacuo and in solvent.

Results and Discussion

For the development of the pharmacophore, three groups were
chosen, the protonated nitrogen (N), the centroid of an aromatic
ring (A), and the centroid of the hydrophobic region (B), Figure
1. These are similar to those selected for determination of the
Loew20 and LMC21 pharmacophores. While the endogenous
ligands for the opioid receptors are peptides, nonpeptidicδ
ligands were investigated due to the relatively lower degree of
conformational freedom in these molecules. A set of prototypical
δ agonists,42,43 Figure 1 (1-6), and antagonists, Figure 1 (7-
10), differing in the carbon-nitrogen skeleton, were selected
for the study. DPI 2505,44 11, which has been reported to be an
antagonist, is an aryl piperazine compound structurally similar

to the agonists such as1. This compound has been analyzed as
a separate case in our studies.

Determination of a pharmacophore, based on the traditional
method of analyzing a low energy conformation of the molecules
in the data set, was done by obtaining the lowest energy
conformation from the MD trajectories and then energy
minimizing it both in vacuo and using an implicit solvent model.
The distances and angles between the pharmacophore points in
each molecule, including those with multiple protonation states,
were calculated. Data for the individual compounds were
tabulated (not shown), and the parameters for agonists,1-6,
and antagonists,7-10, were combined into two separate sets.
Table 1 gives the range of distances and angles obtained for
the compounds in our set of knownδ agonists and antagonists,
and 11, along with the Loew20 and LMC21 pharmacophores.
From Table 1, it can be seen that the geometric parameters for
the minimized structures are similar for the in vacuo and implicit
solvent calculations. This is expected due to the relatively small
number of flexible degrees of freedom in the studied com-
pounds. The agonists in general appear to have greater confor-
mational freedom as indicated by the wider range of values for
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Figure 1. Structures of theδ agonists (1-6) and antagonists (7-10) used for pharmacophore development and DPI2505 (11). The atoms used to define
pharmacophore point A are colored in green, those used for point B are colored in red, and the N in blue denotes the basic nitrogen atom used as the third
point.

2D Conformationally Sampled Pharmacophore A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 10, 2003 3103



some of the distances and angles (e.g., distance NA and angle
NBA), which is expected on the basis of the larger number of
rotatable bonds in these molecules. However, there is significant
overlap in the distance and angle ranges between the agonists
and antagonists. For example, in the case of distance NA and
angles NAB and NBA, the range of antagonist values are fully
within the agonist values. Importantly, in no case is the range
of values for the agonists unique from those for the antagonists.
This shows that it is not possible to discriminate between the
agonists and antagonists by the use of minimum energy
conformations alone.

The distances obtained from our studies of the low energy
conformers (Table 1) are comparable to those of the previous
pharmacophores. The Loew20 pharmacophores are generally in
agreement with the ranges obtained in the present study. An
exception is the AB distance for the Loewδ-recognition
pharmacophore, which is much smaller than the present data
and the Loewδ-selective pharmacophore. This is due to the

use of an extended hydrophobic region to define the pharma-
cophoric point B in both our study and in the determination of
the Loew δ-selective pharmacophore. Similarly, the LMC21

pharmacophore is in agreement with the data obtained from our
study, with complete overlap of the distance ranges. These
results further indicate the limitations in the currently accepted
approach for pharmacophore development.

As discussed in the Introduction, the use of low energy
conformers in the determination of a pharmacophore has
significant drawbacks. To overcome these limitations, MD
simulations were used as a means to identify accessible
conformations of a molecule at room temperature for use in
the determination of the pharmacophore. The distances and
angles between the pharmacophore points were then obtained
from each frame stored in the MD trajectories. This produced
a range of values for each parameter representing the confor-
mational space sampled by the different molecules. The data
were converted to probability distributions for analysis, which
are shown in Figures 2 and 3. Data for11 were included with
the antagonists for this analysis.

From the probability distributions for the individual distances
and angles, Figures 2 and 3, respectively, it is evident that both
the agonists and the antagonists sample overlapping regions of
conformational space. For example, in the case of distance AB,
both classes of compound sample the region of 5-8 Å. Such
overlap is also seen for all of the angles in Figure 3. Comparison
of the data in Figures 2 and 3 and those in Table 1 shows the
range of distances and angles from the MD simulations to be
significantly greater than that for the lowest energy conformers;
this is the foundation of the CSP. Upon binding to a receptor,
a ligand can assume a conformation that is higher in energy
than the unbound global minimum energy conformation due to
the favorable ligand-receptor binding energy. Although while
in the absence of a 3D structure of the ligand-receptor complex,

Figure 2. Probability distributions of the distances between pharmacophore points A, B, and N from the MD trajectories. Distances for agonists (1-6) are
shown in A, B, and C, and distances for antagonists (7-10) and DPI2505 (11) are shown in D, E, and F.

Table 1. Measured Distances and Angles between the
Pharmacophore Points for the Lowest Energy Conformers

distance (Å) angle (deg)

A−B B−N N−A ANB NAB NBA

gas phase
agonists 5.9-7.1 6.2-8.7 4.4-6.8 51-77 55-88 36-63
antagonists 5.8-7.3 6.5-7.0 4.4-4.6 56-81 62-83 37-41
DPI 2505 6.7-6.8 5.8-8.3 6.3-6.8 52-65 51-79 48-64

solutiona

agonists 5.9-7.1 6.8-8.8 4.4-6.8 47-75 62-90 37-61
antagonists 5.8-7.3 6.6-7.0 4.5-4.6 56-79 63-83 37-41
DPI 2505 6.3-6.5 6.5-8.5 6.4-6.8 48-58 58-83 48-64
Loew recognitionb 4.5 6.4 4.4
Loew selectiveb 6.7 7.6 4.5
LMC recognitionc 5.9-6.7 6.7-8.3 4.5-4.6

a Conformation obtained after using the generalized Born solvation model
for energy minimization.b Reference 20.c Reference 21.

A R T I C L E S Bernard et al.

3104 J. AM. CHEM. SOC. 9 VOL. 125, NO. 10, 2003



the ligand binding conformation cannot be determined, it may
be assumed that the bound conformation will be sampled during
a room-temperature MD simulation of the unbound ligand.
Inclusion of all accessible conformations, therefore, may be
considered a more robust approach for pharmacophore develop-
ment. However, as is evident from Figures 2 and 3, in the present
case, the individual distance and angle probability distributions
do not allow for the differentiation of agonists and antagonists.
This indicates that (1) the selected parameters defining the
pharmacophore are not relevant to the biological activities or
(2) the use of the individual terms alone is not adequate to obtain
a rigorous structure-function relationship separatingδ agonists
from antagonists.

The individual parameters indicate the direct relation between
pharmacophore points, but they do not describe the overall
geometry of the molecules. So while individual distances or
angles may overlap for two different molecules, it does not
indicate that the overall geometry of the molecules is similar.
For a definite representation of the conformational geometry, a
combination of these parameters is required. Accordingly, 2D
analyses of all possible combinations of angles with distances
were performed.

Figure 4 shows the probability distribution for this 2D data
for all possible permutations of the angles and distances. Results
include the conformational requirements for both the agonists
(red) and the antagonists (blue). The lowest contour corresponds
to a region of less than 10-7 probability, while the denser
contours indicate increasing probability in 0.005 increments.
Inspection of all of the plots in Figure 4 shows overlap of the
lowest contour; however, it is evident in many cases that the
high probability regions are distinct for the agonists versus the
antagonists. As can be seen in Figure 4A, distance AB versus
angle ANB, the high probability regions are able to differentiate
the conformational requirements for agonists and antagonists.

Similar observations can be made from the other plots such as
for distance BN versus angle NAB, Figure 4E. Plots of the
distance BN versus the different angles offer the best discrimi-
nation (Figure 4B, E, and H), where it can be seen that the
conformational space populated by the agonists and antagonists
clearly differs. The poorest discrimination occurs in the plots
where distance NA is along thex-axis (Figure 4C, F, and I),
where in all cases the high probability regions have some direct
overlap. In combination, these results imply that the structure
of hydrophobic group B and its orientation relative to the other
functional groups are critical for determining the biological
activity of theδ ligands. This result is consistent with previous
observations on the SAR ofδ ligands.22,45

Some overlap exists in all of the plots for the low populated
regions. This may be attributed to the fact that all molecules
considered in the study exert their effects at the same receptor,
that is, theδ receptor. Therefore, intuitively one may expect
some degree of similarity in the conformational requirements
for binding at the same receptor site. However, as noted above,
there are significant differences in the conformational space
sampled by agonists versus antagonists, allowing for the
differentiation of the ligands based on their pharmacological
activity.

The greater flexibility of the agonists as compared to that of
the antagonists can be seen from the wider regions of confor-
mational space sampled by these molecules. Also, for the
agonists, multiple regions of high probability are seen, such as
in Figure 4F and H. From 2D plots for the individual compounds
(see Supporting Information), it was seen that among the
agonists, the diaryl-piperazine compounds1, 2, and5 sampled
almost identical regions, which in general were broad, and the
other agonists3, 4, and6 populated more compact regions with

(45) Portoghese, P. S.; Sultana, M.; Moe, S. T.; Takemori, A. E.J. Med. Chem.
1994, 37, 579-585.

Figure 3. Probability distributions of the angles between pharmacophore points A, B, and N from the MD trajectories. Angles for agonists (1-6) are shown
in A, B, and C, and distances for antagonists (7-10) and DPI2505 (11) are shown in D, E, and F.
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some degree of overlap. In Figure 4, the contours for the agonists
that are adjacent to those for the antagonists, in most cases,
arise from compounds3, 4, and 6 that are structurally more
similar to the antagonists.

The aryl piperazine compound11, DPI2505,44 was reported
to be aδ antagonist in a study investigating the ability ofδ
ligands (peptidic and nonpeptidic) to reverse respiratory depres-
sion induced by alfentanil,46 a µ agonist. Surprisingly, bothδ
agonists and antagonists were able to reverse the hypercapnia
induced by alfentanil. In that study, it was found that admin-
istration of DPI2505 after theδ agonists, BW373U86, Deltor-
phin II, and DPDPE, orδ antagonists naltrindole and TIPP(ψ),
decreased the efficacy of these ligands in reversing the respira-
tory depression induced by alfentanil. The authors suggested
that DPI2505 is perhaps aδ antagonist. While further details
on the activity of this compound are still to be investigated, we
found it to be an interesting candidate for the application of 2D
CSP.

In Table 1, it can be seen that the individual distances and
angles between the pharmacophore points for11 lie in the same
range as those for the agonists, for example, distance NA and
angle NBA. This is also reflected in the one-dimensional

probability distributions, Figures 2 and 3, where11 shows
profiles almost identical to those of agonist1. Figure 5 A, B,
and C shows 2D plots for11 for the three most discriminating
combinations of parameters along with the probability distribu-
tions for the agonists (e.g., red in Figure 4). As is evident, there
is almost complete overlap in the conformational space of
DPI2505 with that of the agonists. Thus, the 2D analysis, which
allows for discrimination of the agonists from the antagonists,
indicates an agonistic activity. Therefore, we predict that,
contrary to the suggested antagonist activity, this compound may
possess agonist activity.

Conclusions

In the present study, MD simulations are used to sample the
conformational space accessible to selectedδ opioid agonists
and antagonists (Figure 1). This approach builds upon previous
pharmacophore studies using MD- or Monte Carlo (MC)-based
methods to sample the conformational space of ligands. For
example, Guarnieri and Wilson developed a “smart” MC-based
algorithm that was combined with simulated annealing to sample
the conformational space accessible to a leukotriene,47 and MC-
based approaches have been used by other workers.38 Similar
to MC are torsion driving methods to sample conformational

(46) Aldrich, J. V. Analgesics. InBurger’s Medicinal Chemistry and Drug
DiscoVery, 5th ed.; Wolff, M. E., Ed.; John Wiley & Sons: New York,
1996; Vol. 3, pp 321-441. (47) Guarnieri, F.J. Comput.-Aided Mol. Des.1995, 16, 648-653.

Figure 4. 2D probability distributions of the distances and angles between the pharmacophore points A, B, and N. Contours in red are for the agonists
(1-6), and those in blue are for the antagonists (7-10). Increments on thez-axis (probability) are 0.005 units. Each column corresponds to a single distance,
and each row corresponds to a single angle.
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space,48 often combined with genetic algorithms,49,50 including
studies on opioids.51,52 MD has also previously been used to
sample conformational space in the development of QSAR
models.53 However, in all of the previous studies, single or a
small number of low energy conformations were ultimately
selected for development of the pharmacophore. This selection
typically involved identifying a “common” conformation among
different molecules being studied, an approach in which
alignment of the structures, or alternatively clustering based on
RMS differences,36,37,39 strongly influences the outcome. To
avoid possible limitations associated with the selection of
individual structures and structural alignments, the entire
distributions are used presently to develop the pharmacophore.
We term this approach the conformationally sampled pharma-
cophore (CSP). It should be noted that MD simulations at higher
temperatures would sample an increased region of conforma-
tional space of the molecules and thereby increase the likeliness
of including the bound conformation, although such an approach
may make discrimination of the pharmacophores more difficult.
CSP analysis of the present collection of compounds using MD
simulations at 600 K yielded results similar to those in Figure
4 (see Supporting Information).

The CSP approach takes into account the dynamic nature of
ligands, overcoming limitations in some traditional pharma-
cophore development methods. Most importantly, the inclusion
of all accessible conformations in the pharmacophore increases
the probability that the bound conformation of the ligand is
included in the pharmacophore. A complicating factor of
inclusion of all possible conformations in the pharmacophore
is an inability to distinguish unique structural characteristics
between, in the present case,δ agonists and antagonists (e.g.,
Figures 2 and 3). To overcome this, the pharmacophore analysis
was extended to two dimensions (Figure 4). This extension
allowed for discrimination of theδ agonists and antagonists.

Application of this pharmacophore to DPI2505, previously
suggested to be aδ antagonist, suggests that it may be an
agonist. Novelδ ligands reported recently and molecules
designed de-novo, using the pharmacophore described here, are
being investigated to refine the existing model.

The developed CSP approach is analogous to the use of MD
simulations in the development of a receptor-based dynamic
pharmacophore, as recently described.54 In that study, multiple
protein conformations of HIV Integrase were used to develop
the pharmacophore, and it was shown that known inhibitors fit
the dynamic pharmacophore better than the static model. This
again reflects the dynamic nature of the receptor-ligand
interaction and the necessity of using multiple conformations
of the receptor or ligand for pharmacophore development.

In the absence of high-resolution receptor structures, as in
the case of the opioid receptors and other GPCR, computational
models55-57 can serve as a means for structure-based design of
ligands. The CSP methodology described here should be
similarly useful in the rational design of molecules based on
receptor ligands. It should be particularly advantageous in the
absence of receptor structures or models and also when the
receptor bound ligand conformations are not known.
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Figure 5. 2D probability distributions of the angles between the pharmacophore points A, B, and N with distance BN for DPI2505 (11). The corresponding
data for the antagonists from Figure 4B, E, and H are shown in red.

2D Conformationally Sampled Pharmacophore A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 10, 2003 3107


